A Trust-based Approach for a Competitive Cloud/Grid Computing Scenario

F. Messina1, G. Pappalardo1, D. Rosaci2,
\textbf{C. Santoro}1, G. M. L. Sarnè2

1Dipartimento di Matematica ed Informatica
Università di Catania, ITALY

2DIMET, Università “Mediterranea” of Reggio Calabria, ITALY

IDC 2012 - 6th International Symposium on Intelligent
Distributed Computing
Calabria, Italy - Sept. 24-26, 2012
Outline

Background and motivation

System Model

Reliability and Reputation Model

Resource finding: SW-HYGRA System

Experimental results

Summary and Future work
Context: a competitive grid/cloud computing scenario.

- Resource are assigned on-demand
- A price is payed for the services offered
- The computing nodes compete for the assignment of a certain job/request

To obtain a job, a node *may cheat on* in announcing its resource availability and then request the collaboration of other nodes.

To select the nodes to collaborate with, the evaluation of their *trust degree* must be performed.
1. Very large-scale cloud/grid computing environment (in the order of 10K - 100K nodes).

2. Some special nodes, called Task Allocators (TA), have the responsibility of receiving client’s requests and selecting the most appropriate node (say A) on the basis of a trust model.

3. Node A could not possess adequate resources but, to obtain the job, may ask the collaboration of/buy resources from other nodes.

4. ...
3 ...

4 Node A starts a resource finding protocol in order to obtain the set of candidate nodes for collaboration.

5 For each node of the set, say B, node A asks a third node, say C, the information about the reputation of B; on this basis, A selects the nodes to collaborate with.

6 Selection of a node n is performed by A with a preference coefficient $P_A(n)$ computed using the reputation protocol.

7 When the service is provided, the TA asks the client a feedback which is, in turn, forwarded to A so that it can use the information to update the trust degree of collaborating nodes.
Reliability-Reputation Model (1)

- $SR_i(j)$, service reliability that node i assigns to j.
- $RR_i(j)$, recommendation reliability that node i assigns to j.
- $R_i(j)$, reputation that node i assigns to j.
- $RECC_i(j, k)$, recommendation provided to i by j about k.
- $FEED_i(s, j)$, quality of collaboration (feedback) provided to i by j about service s.

These functions/maps are in the range $[0, 1]$ (0=minimum, 1=maximum).
Phase 1: Recommendation reception. $RECC_i(j, k)$ is updated accordingly.

Phase 2.1: Computation of SR (service reliability)

- Let $Services_i(j)$ the set of services provided to i by j at previous step;
- Compute $SR_i(j) = \alpha \cdot SR_i(j) + (1 - \alpha) \cdot \frac{\sum_{s \in Services_i(j)} FEED_i(s, j)}{||Services_i(j)||}$, with $\alpha \in [0, 1]$ the update rate of $SR_i(j)$.
Phase 2.2: Computation of RR (recommendation reliability)

- Compute
 \[rr_i(j) = \frac{1}{|\text{Nodes}(j)|} \sum_{k \in \text{Nodes}(j)} \frac{\sum_{s \in \text{Services}(k)} (1 - |\text{RECC}(j,k) - \text{FEED}(s,k)|)}{|\text{Services}(k)|} \]

- Update \(RR_i(j) = \alpha \cdot RR_i(j) + (1 - \alpha) \cdot rr_i(j) \)

Phase 3: Computation of R (reputation)

- \(R_i(j) = \frac{\sum_{k \in \text{NODES}, k \neq i} \text{RECC}(k,j) \cdot RR_i(k,j)}{\sum_{k \in \text{NODES}, k \neq i} RR_i(k,j)} \)

Phase 4: Computation of P (preference)

- \(P_i(j) = \beta \cdot SR_i(j) + (1 - \beta) \cdot R_i(j) \) with \(\beta \in [0, 1] \) the service reliability vs. recommendation reliability weight.

\(P_i(j) \) is then used by node \(i \) to decide whether selecting node \(j \) for collaboration.
Very large environment (100K nodes): Resource finding may be hard!

SW-HYGRA: *Small-World HYperspace Grid Resource Allocation*

- Decentralised self-organising approach
- Resource are coordinates of a virtual *hyperspace*;
- Each node, on the basis of resource amount availability, is a *point* in the hyperspace;
- A *metric*, based on Euclidean distance, is defined;
- An *overlay network* is constructed;
- *Resource Finding* is preformed by surfing the overlay network.
SW-HYGRA: Overlay Construction

- **Algorithm**
 1. Each node contacts its linked nodes in order to obtain the set of *2-hop linked* nodes;
 2. The set is ordered on the basis of the Euclidean distance;
 3. Each node, on the basis of resource amount availability, is a *point* in the hyperspace;
 4. Connections of *n* are rearranged in order to create *short links* with probability p_s and *long links* with probability p_l;
 5. As a result, nodes featuring similar resource availability form *clusters* interconnected by short links, while long links interconnects clusters between them.

- The resulting structure resembles a *small-world network*.
- Since a node may change its resource availability, the algorithm runs continuously.
SW-HYGRA: Resource Finding

- **Algorithm**
 1. A resource request q is submitted to a node n of the network;
 2. If n is able to fulfill q the algorithm terminates;
 3. Otherwise, n contacts its linked nodes and chooses the one with the smallest euclidean distance to q.

- The request “surfs” the network through long links to reach the cluster where the target node resides.
- Then it surfs the net into the cluster, by using short links, in order to find the target node.

Preliminary Experiments

We used a C-based simulator (ComplexSim) developed by the authors to simulate the proposed schema.

Parameters:

- q the number of resources \textit{declared} by the single node
- q^* the number of resources \textit{actually offered} by the single node
- N number of nodes $= 10^5$
- T set of nodes \textbf{with} trust model
- WT set of nodes \textbf{without} trust model

Measure:

- QoS perceived by the client
Preliminary Experiments: QoS vs. Node capacity

![Graph showing QoS vs. q*/q (|WT|/N=0.5)]
Preliminary Experiments: QoS vs. Number of Nodes without Trust Model

![Graph showing QoS vs. |WT|/N (q*/q = 0.5)](image)
Conclusions and Future Work

- We proposed a trust model for large scale competitive grids/clouds.
- The use of SW-HYGRA allows a fast finding of interlocutors.
- Preliminary studies prove the effectiveness of the model.
- Further work is needed to simulate more realistic scenarios to better understand the trend of trust dimensions, role of coefficients, etc.
A Trust-based Approach for a Competitive Cloud/Grid Computing Scenario

F. Messina1, G. Pappalardo1, D. Rosaci2,
C. Santoro1, G. M. L. Sarné2

1Dipartimento di Matematica ed Informatica
Università di Catania, ITALY

2DIMET, Università “Mediterranea” of Reggio Calabria, ITALY

IDC 2012 - 6th International Symposium on Intelligent Distributed Computing
Calabria, Italy - Sept. 24-26, 2012